প্রত্যেকটি মৌলিক পদার্থের নিউক্লিউয়াসেই নির্দিষ্ট সংখ্যক প্রােটন কণা থাকে, আর নিউক্লিয়াসে প্রটোনের এই সংখ্যাকে বলে পারমাণবিক সংখ্যা (Atomic Number) যা দিয়ে মুলতঃ মৌলিক পদার্থের বেশীরভাগ রাসায়নিক বৈশিষ্ট্য নির্ধারিত হয় (পরােক্ষভাবে একে ইলেকট্রনের সংখ্যাও বলা যেতে পারে কারণ সাধারণভাবে পরামাণুর কক্ষ পথে বিপরীত চার্জবিশিষ্ট্য ইলেকট্রনের সংখ্যাও সমান থাকে)। ইলেকট্রনের তুলনায় প্রােটন এবং নিউট্রনের ভার অপেক্ষাকৃত অনেক বেশী, তাই কোন পদার্থের ভর সংখ্যা (Mass Number) মাপা হয় তার প্রােটন এবং নিউট্রনের সংখ্যা দিয়ে।
যেমন ধরুন, সাধারণত কার্বনের নিউক্লিউয়াসে ৬টি প্রােটন এবং ৬টি নিউট্রন থাকে, তাই তার ভর সংখ্যা হচ্ছে ১২, একে বলে কার্বন-১২। সাধারণভাবে নিউক্লিউয়াসে নিউট্রনের সংখ্যা প্রটোনের সংখ্যার সমান বা কয়েকটা বেশী থাকে। কিন্তু আবার কখনও কখনও কোন কোন পদার্থের নিউক্লিয়াসে সমান সংখ্যক প্রােটন থাকলেও তাদের বিভিন্ন ভারশান এর মধ্যে নিউট্রনের সংখ্যায় ভিন্নতা দেখা যায়। যেমন, কার্বন-১৩ এ রয়েছে ৭টি নিউট্রন আর কার্বন-১৪এ থাকে ৮টি নিউট্রন, যদিও তাদের প্রত্যেকেরই প্রটোনের সংখ্যা সেই ৬টিই। আর মৌলিক পদার্থগুলাের মধ্যে যখন প্রটোনের সংখ্যা সমান থাকে কিন্তু নিউট্রনের সংখ্যায় তারতম্য দেখা যায় তখন তাদেরকে বলা হয় আইসােটোপ (Isotope)।
তেজস্ক্রিয় ক্ষয় এবং তেজস্ক্রিয় ডেটিং বুঝতে হলে এই আইসােটোপের ব্যাপারটা ভালাে করে বােঝা দরকার। এই আইসােটোপগুলােরই কোন কোনটা প্রকৃতিতে অস্থিত অবস্থায় থাকে এবং তারা ধীরে ধীরে ক্ষয়ের মাধ্যমে নিজেদের নিউক্লিয়াসের গঠনের পরিবর্তনের মাধ্যমে আরেক মৌলিক পদার্থে রূপান্তরিত হয়। আইসােটোপের এই অস্থিরতারই আরেক নাম হচ্ছে ‘রেডিওআকটিভিটি’ বা ‘তেজস্ক্রিয়তা। আর যে পদ্ধতিতে ক্ষয় হতে হতে তারা আরেক পদার্থে পরিণত হয় তাকেই বলে তেজস্ক্রিয় ক্ষয়’। যেমন ধরুন, সীসার ৪টি সুস্থিত, কিন্তু ২৫টি অস্থিত আইসােটোপ আছে, আর এই ২৫টি অস্থিত আইসােটোপই হচ্ছে তেজস্ক্রিয় পদার্থ। আবার ইউরেনিয়ামের সবগুলাে আইসােটোপই অস্থিত এবং তেজস্ক্রিয় [৫]। আর আমাদের এই পরম ডেটিং পদ্ধতির মুল চাবিকাঠিই হচ্ছে পদার্থের এই তেজস্ক্রিয় বৈশিষ্ট্য এবং তার ফলশ্রুতিতে ঘটা তেজস্ক্রিয় ক্ষয়।
এই তেজস্ক্রিয় ক্ষয় ঘটতে পারে বিভিন্নভাবে। আলফা এবং বেটা ক্ষয়ের কথা অনেক শুনি আমরা। আলফা ক্ষয়ের সময় আইসােটোপটি একটা আলফা কণা (দু’টো প্রােটন এবং দু’টো নিউট্রনের সমন্বয়ে তৈরি এই আলফা কণা) হারায় তার নিউক্লিয়াস থেকে। অর্থাৎ তার ভারসংখ্যা ৪ একক কমে গেলেও পারমাণবিক সংখ্যা বা প্রটোনের সংখ্যা কমছে মাত্র ২ একক। কিন্তু এর ফলাফল কি দাঁড়াচ্ছে? আর কিছুই নয়, নিউক্লিয়াসের গঠনের পরিবর্তন হয়ে আইসােটোপটি এক মৌলিক পদার্থ থেকে আরেক মৌলিক পদার্থে পরিণত হয়ে যাচ্ছে।
একটা উদাহরণ দিলে বােধ হয় ব্যাপারটা আরেকটু খােলাসা হবে – আলফা ক্ষয়ের ফলে ইউরেনিয়াম ২৩৮ (৯২টি প্রােটন এবং ১৪৬ নিউট্রনের সমন্বয়ে তৈরি এই মৌলিক পদার্থটি) পরিণত হচ্ছে সম্পূর্ণ নতুন এক মৌলিক পদার্থ থােরিয়াম ২৩৪-এ (৯০ টি প্রােটন এবং ১৪৪ নিউট্রনের সমন্বয়ে তৈরি)। ওদিকে আবার বেটা ক্ষয়ের ক্ষেত্রে কিন্তু ঘটে আরেক ঘটনা। আইসােটোপের পরমাণু থেকে একটি ইলেকট্রন বের করে দিয়ে নিউক্লিয়াসের ভিতরের একটি নিউট্রন প্রােটনে পরিণত হয়ে যায়। আরও বিভিন্ন ধরণের প্রক্রিয়ায় তেজস্ক্রিয় ক্ষয় ঘটতে পারে, সময় এবং জায়গার অভাবে এখন আর বিস্তারিত বর্ণনায় যাচ্ছি না।
তেজস্ক্রিয় ক্ষয়ের মুলে রয়েছে বিভিন্ন আইসােটোপের ভিতরের নিউক্লিয়াসের গঠনের পরিবর্তন বা পারমাণবিক পরিবর্তন এবং তার ফলশ্রুতিতেই এক মৌলিক পদার্থ থেকে আরেক নতুন মৌলিক পদার্থে রূপান্তরিত হয় – এই ব্যাপারটা বােধ হয় এতক্ষনে আমাদের কাছে বেশ পরিষ্কার হয়ে উঠেছে। আর যেহেতু ভূত্বকের বিভিন্ন শীলাস্তরে বিভিন্ন ধরনের আইসােটোপ পাওয়া যায় তাই এই তেজস্ক্রিয় ক্ষয়ের বৈশিষ্ট্যকে কাজে লাগিয়ে শীলা বা ফসিলের বয়স নির্ধারণ করা হয়। চলুন তাহলে দেখা যাক কিভাবে এই তেজস্ক্রিয় আইসােটোপগুলােকে ভূতাত্ত্বিক ঘড়ি হিসেবে ব্যবহার করে পৃথিবী এবং তার প্রাণের বিবর্তনের ধারাবাহিক ইতিহাসের চিত্রটিকে বিজ্ঞানীরা কালি কলমে পরিষ্কারভাবে ফুটিয়ে তুলতে সক্ষম হয়েছেন।
বিভিন্ন শীলার মধ্যে বিভিন্ন ধরণের খনিজ পদার্থ বিদ্যমান থাকে, আর এই খনিজ পদার্থের মধ্যেই থাকে তেজস্ক্রিয় আইসােটোপগুলাে। আধুনিক তেজস্ক্রিয় ডেটিং পদ্ধতিগুলাের মধ্যে ইউরেনিয়াম-সিরিজ ডেটিং বহুলভাবে ব্যবহৃত। তেজস্ক্রিয় ইউরেনিয়াম-২৩৮ ক্ষয় হতে হতে সীসা-২০৬ এ পরিণত হয় সুদীর্ঘ সাড়ে চারশাে কোটি বছরে। এক এক করে, পুর্বনির্ধারিত একটি নির্দিষ্ট হারে এই তেজস্ক্রিয় আইসােটোপগুলাে নতুন এক স্থিত এবং অতেজস্ক্রিয় পদার্থে পরিণত হয়ে যেতে থাকে। দীর্ঘ সময়ের বিস্তৃতিতে ঘটতে থাকলেও এই ক্ষয় কিন্তু ঘটে একটি সুনির্দিষ্ট হারে, আর সেখানেই লুকিয়ে রয়েছে আমাদের রেডিওমেট্রিক বা তেজস্ক্রিয় ডেটিং পদ্ধতির জীয়ণকাঠি।
অত্যন্ত নির্ভরযােগ্য এই ক্ষয়ের হার মাপার জন্য আইসােটোপের হাফ-লাইফ (Half-Life) বা অর্ধ-জীবন -এর হিসাবটি ব্যবহার করা হয়। বিজ্ঞানীরা প্রথমে বিভিন্ন পরীক্ষা নিরীক্ষার মাধ্যমে, কোন এক আইসােটোপের নমুনার পারমাণুর অর্ধেকাংশের ক্ষয় হয়ে যেতে কত সময় লাগবে তার হিসেবটা বের করে ফেলেন। আইসােটোপের অর্ধ-জীবনের ব্যাপারটা একটা উদাহরণের মধ্যমে ব্যাখ্যা করে দেখা যাকঃ ধরুন, কোন একটি তেজস্ক্রিয় আইসােটোপ ‘ক’ -এর অর্ধ-জীবন এক লাখ বছর, সে ধীরে ধীরে তেজস্ক্রিয় ক্ষয়ের মাধ্যমে মৌলিক পদার্থ ‘ক’ থেকে ‘খ’ এ পরিণত হয় এবং এক লাখ বছরের শুরুতে পরমাণুর সংখ্যা ছিলাে ১০০০।
এখন প্রথম এক লাখ বছর বা এক অর্ধ-জীবন পার করে দেওয়ার পর আমরা আইসােটোপটিকে কি অবস্থায় দেখতে পাবাে? আইসােটোপ ‘ক’ -এর ১০০০ পরমাণুর অর্ধেক ৫০০ পরামাণু এখনও সেই আগের অবস্থা ‘ক’ তেই রয়ে গেছে আর বাকী অর্ধেক বা ৫০০ পরমাণু ‘খ’তে পরিণত হয়ে গেছে। তাহলে কি ২ লাখ বছর ‘ক’ -এর সবটাই ‘খ’ তে পরিণত হয়ে যাবে? না, অর্ধ-জীবনের হিসেবের কায়দাটা বেশ সােজা হলেও ঠিক এরকম সরলরৈখিক নয়। দুই লাখ বছর পরে দেখা যাবে যে, ‘ক’ -এর অবশিষ্ট ৫০০ পরমাণুর অর্ধেক অর্থাৎ আরও ২৫০টি ‘খ’ তে পরিণত হয়ে ‘খ’ -এর পরমাণুর মােট সংখ্যা দাঁড়িয়েছে ৭৫০ এ, আর তেজস্ক্রিয় ক্ষয়ের ফলশ্রুতিতে ‘ক’ তে এখন অবশিষ্ট রয়েছে ২৫০টি পরমাণু [৬]।
তারপর তিন লাখ বছর পর ‘খ’ -এর পরমাণুর সংখ্যা এসে দাঁড়াবে ৮৭৫ এ। এখন ধরুন, তিন লাখ বছর পর আজকে এখানে দাঁড়িয়ে একজন বিজ্ঞানী খুব সহজেই বের করে ফেলতে পারবেন এই আইসােপটিসহ শীলাটির বয়স কত। আর তার জন্য তাকে জানতে হবে দু’টো তথ্যঃ আইসােটোপ ‘ক’ -এর অর্ধ-জীবন কত (বিজ্ঞানীরা ইতােমধ্যেই তার বিস্তারিত তালিকা তৈরি করে রেখেছেন), আর ওই শীলায় ‘ক’ এবং ‘খ’ -এর পরিমানের আনুপাতিক হার কত।
ভূমিকম্প, আগ্নেয়গিরী ইত্যাদির ফলশ্রুতিতে ভুপৃষ্ঠে লাভা নির্গত হয়। লাভা যে মুহূর্তে ঠান্ডা এবং শক্ত হয়ে কেলাষিত হতে শুরু করে, তখন থেকেই ঘুরতে শুরু করে এই তেজস্ক্রিয় ঘড়ির কাঁটা। তখন থেকেই ক্রমাগতভাবে নির্দিষ্ট হারে তেজস্ক্রিয় বিকিরণ এবং ক্ষয়ের প্রক্রিয়া শুরু হয়ে যায়, নির্দিষ্ট নিয়ম মেনে এই তেজস্ক্রিয় মৌলিক পদার্থগুলাে রূপান্তরিত হতে শুরু করে আরও সুস্থিত অন্য কোন মৌলিক পদার্থে। কিন্তু এই প্রক্রিয়া যখন চলতে থাকে তখন আংশিকভাবে রূপান্তরিত পদার্থটির অংশটিও শিলাস্তরে ভিতরেই রয়ে যায়। তাই এদের দু’টোর পরিমাণের আনুপাতিক হার নির্ধারণ করা কোন কঠিন কাজ নয়।
যেমন ধরুন, পটাসিয়াম-৪০ যখন সুস্থিত আর্গন-৪০ এ পরিণত হতে থাকে, তখন আর্গন-80 লাভার কোষের মধ্যে গ্যাসের আকারে আটকে থাকে। বিভিন্ন শীলার মধ্যে বহুল পরিমাণে পটাসিয়াম-আর্গন পাওয়া যায় বলে বিজ্ঞানীরা বহুলভাবে পটাসিয়াম-আর্গন ডেটিং পদ্ধতি ব্যবহার করেন। ইউরেনিয়াম সিরিজের ডেটিং -এর কথা আগেই উল্লেখ করেছিলাম। ইউরেনিয়াম ২৩৮ -এর অর্ধ-জীবন সাড়ে চারশাে কোটি বছর, পটাসিয়াম ৪০ -এর হচ্ছে ১৩০ কোটি বছর, ইউরেনিয়াম ২৩৫ -এর ৭৫ কোটি বছর, ওদিকে আবার কার্বন ১৫ -এর অর্ধ-জীবন হচ্ছে মাত্র ২.৪ সেকেন্ড। এত বিশাল সময়ের পরিসরে বিস্তৃত অর্ধ- জীবন সম্পন্ন তেজস্ক্রিয় পদার্থগুলাে রয়েছে বলেই বিজ্ঞানীরা আজকে একটি দুটি নয়, বহু রকমের তেজস্ক্রিয় ডেটিং বা অন্যান্য ডেটিং -এর সাহায্য নিতে পারেন কোন ফসিলের বয়স নির্ধারণের জন্য।
ফসিলের আপেক্ষিক বয়স সম্পর্কে একটা ধারণা করতে পারলে সেই অনুযায়ী প্রযােজ্য ডেটিং পদ্ধতিটা ব্যবহার করেন তারা। বিভিন্ন পদ্ধতিতে ক্রস-নিরীক্ষণ করে তবেই তারা নিশ্চিত হন ফলাফল সম্পর্কে। আর তার ফলেই সম্ভব হয়ে ওঠে এত সুনির্দিষ্টভাবে এত প্রাচীন সব ফসিলের বয়স নির্ধারণ করা। চলুন দেখা যাক বিভিন্ন ধরণের ডেটিং পদ্ধতি ব্যবহার করে কি করে ফসিলের বয়স বের করা হয়।
অনেক শীলাস্তরে বিশেষ করে আগ্নেয় শীলাস্তরে প্রচুর পরিমাণে ইউরেনিয়াম, পটাসিয়াম জাতীয় তেজস্ক্রিয় পদার্থ পাওয়া যায়। আবার পাললিক শীলার মধ্যে তেমন কোন তেজস্ক্রিয় পদার্থের অস্তিতই থাকে না।
কিন্তু আমরা জানি যে, আগ্নেয় শীলায় ফসিল সংরক্ষিত হয় না, ফসিল পাওয়া যায় শুধু পাললিক শীলাস্তরে। তাহলে পাললিক শীলাস্তরের এই ফসিলগুলাের বয়স কিভাবে নির্ধারণ করা হয়? এক্ষেত্রে আপেক্ষিক এবং পরম দু’টো পদ্ধতিই ব্যবহার করা যেতে পারে। প্রথমে পাললিক শীলা স্তরের উপরে এবং নীচে যে আগ্নেয় শিলাস্তর দু’টো তাকে স্যান্ডুইচের মত আটকে রেখেছে, তাদের বয়স নির্ধারণ করা হয়। এখান থেকে বিজ্ঞানীরা বুঝতে পারেন যে মধ্যবর্তী পাললিক শিলাস্তরে সংরক্ষিত ফসিলের বয়স এই দুই আগ্নেয় শিলাস্তরের বয়সের মাঝামাঝিই হবে।
এখন যদি দেখা যায় যে, ফসিলটির নিজের মধ্যে যথেষ্ট পরিমাণে তেজস্ক্রিয় পদার্থ আটকে গেছে তাহলে তেজস্ক্রিয় ডেটিং -এর মাধ্যমে ফসিলটির বয়স সরাসরিই নির্ধারণ করা যেতে পারে। সরাসরি ফসিলের বয়স হিসেব করার জন্য তেজস্ক্রিয় ডেটিং পদ্ধতিগুলাের মধ্যে রেডিওকার্বন ডেটিং হচ্ছে অত্যন্ত বহুলভাবে ব্যবহৃত আরেকটি পদ্ধতি। এই পদ্ধতি দিয়ে শিলাস্তরের বয়স নয়, ফসিলের মধ্যে মৃত টিস্যুরই বয়স সরাসরি নির্ধারণ করে ফেলা যায়। কয়েক হাজার বছরের অর্থাৎ ভূতাত্ত্বিক সময়ের বিচারে অপেক্ষাকৃত সাম্প্রতিক কালের ইতিহাস জানার জন্য এই পদ্ধতি অত্যন্ত গুরুত্বপূর্ণ ভুমিকা পালন করে। বিশেষ করে মানুষ এবং তার পূর্বপুরুষদের ফসিলের বয়স নির্ধারণে ব্যাপকভাবে রেডিও কার্বন ডেটিং পদ্ধতি ব্যবহার করা হয়।
সাধারণত আমরা প্রকৃতিতে যে কার্বনের কথা শুনি তার প্রায় সবটাই সুস্থিত আইসোটোপ কার্বন ১২। তবে খুবই সামান্য পরিমাণে হলেও অস্থিত কার্বন-১৪ -এর অস্তিত্বও দেখতে পাওয়া যায় প্রকৃতিতে। কসমিক রেডিয়েশন বা বিচ্ছুরণের ফলে বায়ুমণ্ডলে অনবরতই একটি নির্দিষ্ট হারে সুস্থিত নাইট্রোজেন ১৪ থেকে এই কার্বন-১৪ তৈরি হতে থাকে। এই কার্বন-১৪ -এর অর্ধ-জীবন হচ্ছে ৫,৭৩০ বছর, অর্থাৎ প্রতি ৫৭৩০ বছরে কার্বন-১৪ -এর অর্ধেকাংশ তেজস্ক্রিয় ক্ষয়ের মাধ্যমে নাইট্রোজেন-১৪ এ রূপান্তরিত হয়। কার্বন-১৪ -এর অর্ধ-জীবন এত ছােট যে, খুবই অল্প পরিমাণে হলেও ক্রমাগতভাবে নাইট্রোজেন ১৪ থেকে কার্বন ১৪ তৈরি হতে না থাকলে প্রকৃতিতে এর অস্তিত বেশিদিন টিকে থাকতে পারতাে না।
যাই হােক, এর উৎপত্তি এবং ক্ষয়ের হার ধ্রুব হওয়ার কারণে প্রকৃতিতে কার্বন-১২ আর কার্বন-১৪ -এর আনুপাতিক হার সব সময় সমান থাকে। এই দুই রকমের কার্বন আইসােটোপই বায়ুমন্ডলে রাসায়নিকভাবে অক্সিজেনের সাথে যুক্ত হয়ে কার্বন ডাই অক্সাইডে পরিণত হয়ে যায়। উদ্ভিদ তার খাদ্য তৈরীর জন্য এই কার্বন ডাই অক্সাইড গ্রহন করে, আর ওদিকে প্রাণীকুল গ্রহন করে উদ্ভিদকে তার খাদ্য হিসেবে, আবার তারাই হয়তাে পরিণত হয় অন্য কোন প্রাণীর খাদ্যে। উদ্ভিদ যেহেতু কার্বন-১২ আর কার্বন-১৪ দিয়ে তৈরি। উভয় কার্বন ডাই অক্সাইডই গ্রহন করে তাই সমগ্র ফুড চেইন বা খাদ্য শৃংখল জুড়েই এই দুই কার্বন আনুপাতিক হারে সমানভাবেই বিরাজ করে।
বায়মন্ডল থেকে উদ্ভিদে, উদ্ভিদ থেকে প্রাণীর দেহে সঞ্চারিত হয় এই কার্বন ১২ এবং কার্বন ১৪। কিন্তু এই চক্রের সব কিছুই বদলে যায় যেই মাত্র প্রাণী বা উদ্ভিদের মৃত্যু ঘটে, সে আর নতুন কোন কার্বন ১৪ গ্রহন করতে পারে না, তখন তার দেহে বিদ্যমান কার্বন-১৪ একটি নির্দিষ্ট হারে নাইট্রজেন ১৪ এ রূপান্তরিত হতে থাকে। সুতরাং একটা মৃত জীবের দেহে কার্বন-১২ -এর তুলনায় কার্বন ১৪ -এর পরিমান আনুপাতিক হারে কমে যেতে শুরু করে। আর সে কারণেই ফসিলের দেহে বিদ্যমান কার্বন-১২ এবং কার্বন-১৪ -এর এই আনুপাতিক হার হিসেব করে সহজেই তার বয়স নির্ধারণ করে ফেলা যায়। তবে রেডিও কার্বন ডেটিং পদ্ধতি দিয়ে শুধুমাত্র অপেক্ষাকৃত সাম্প্রতিক কালের ফসিলের বয়স নির্ধারণ করা সম্ভব, ৩০ হাজার থেকে খুব বেশী হলে ৫০ হাজার বছরের পুরনাে ফসিলের বয়স বের করা সম্ভব এই পদ্ধতিতে। আমরা আগেই দেখেছি, কার্বন-১৪ -এর অর্ধ-জীবন ভূতাত্ত্বিক সময়ের অনুপাতে খুবই ক্ষুদ্র, মাত্র ৫৭৩০ বছর [৬]। তাই, ৩০-৫০ হাজার বছরের চেয়েও পুরনাে ফসিলে যে অতি সামান্য পরিমাণে কার্বন ১৪ বিদ্যমান থাকে তা দিয়ে আর যাই হােক সঠিকভাবে তার বয়স নির্ধারণ করা সম্ভব নয়। তবে কয়েক হাজার বছরের ফসিলের ডেটিং -এর জন্য এই পদ্ধতির জুড়ি মেলা ভার।
তাহলে দেখা যাছে যে, তেজস্ক্রিয় পদার্থগুলাের এই সুনির্দিষ্ট অর্ধ-জীবনের ব্যাপারটি আমাদের সামনে শীলাস্তরের এবং ফসিলের বয়স বের করার এই অনবদ্য সুযোগের দরজাটি খুলে দিয়েছে। বহু আগে থেকেই ধারণা করে আসলেও ১৯২০ সালের দিকেই প্রথম তেজস্ক্রিয় ডেটিং পদ্ধতি ব্যবহার করে দেখানাে হয়েছিলাে যে, পৃথিবীর বয়স কয়েকশাে কোটি বছর [৭]। তারপর থেকে বিজ্ঞানীরা নানাভাবেই নানা রকমের তেজস্ক্রিয় পদ্ধতিতে ভূতাত্ত্বিক বয়স নির্ধারণের উপায় বের করেছেন। আর শুধু তেজস্ক্রিয় ডেটিং ই তাে নয়, এর সাথে সাথে আরও বিভিন্ন ধরণের আধুনিক পদ্ধতিও আবিষ্কার করা হয়েছে পৃথিবীর এই মহাযাত্রার সময়কাল নির্ধারণের জন্য।
যেমন ধরুন, বিজ্ঞানীরা এখন জানেন যে, পৃথিবীর চৌম্বক ক্ষেত্র প্রায়শঃই তার দিক পরিবর্তন করে। প্রায়শঃ বলতে আমাদের সাধারণ হিসেবে নয়, ভূতাত্ত্বিক বিশাল সময়ের তুলনায় প্রায়শঃই বােঝানাে হচ্ছে এখানে। গত এক কোটি বছরে পৃথিবী নাকি মােট ২৮২ বার উত্তর থেকে দক্ষিণে এবং দক্ষিণ থেকে উত্তরে তার চৌম্বক ক্ষেত্রের দিক পরিবর্তন করেছে [৫]। আর তার সাথে সাথে আমাদের পৃথিবীর অভ্যন্তরের আগ্নেগিরির গলিত শীলার ভিতরের খনিজ পদার্থগুলােও কম্পাসের মতই দিক পরিবর্তন করে এবং তার একটা সুনির্দিষ্ট রেকর্ড রেখে দেয়। তারপর যখন এই লাভাগুলাে শক্ত হয়ে শীলাস্তরে পরিণত হয় তখন এই রেকর্ডগুলাে অবিকৃত অবস্থায় ওইভাবেই থেকে যায়।
এ থেকেও ভূতত্ত্ববিদেরা অনেক শিলাস্তরেরই আপেক্ষিক বয়স নির্ধারণ করতে পারেন। এছাড়া আরও মজার মজার ধরণের কিছু ডেটিং পদ্ধতি রয়েছে, যেমন ধরুন, বড় বড় গাছের কান্ডে যে রিং বা বৃত্ত তৈরি হয় তার মাধ্যমেও উদ্ভিদের ফসিলের বা কাঠের বয়স বের করে ফেলা সম্ভব। বাৎসরিক বৃদ্ধির ফলে গাছের গােড়ায় যে স্তর বা বৃক্ষ-বৃত্তের সৃষ্টি হয় তা এক ধরণের প্রাকৃতিক নিয়ম মেনেই ঘটে, আর এর থেকেই বিজ্ঞানীরা হিসেব করে বের করতে পারেন তার বয়স। এরকম আরও বহু ধরণের ডেটিং পদ্ধতি রয়েছে, নীচের ছবিটিতে (চিত্র ৭.৫) এরকম বিভিন্ন ধরণের ডেটিং পদ্ধতি এবং তাদের দিয়ে কোন কোন সময়ের সীমা নির্ধারণ করা যায় তার একটা সংক্ষিপ্ত তালিকা দেওয়া হল [৮]। এখন আর আমাদের একটি বা দু’টি ডেটিং পদ্ধতির উপর নির্ভর করে শীলাস্তর বা ফসিলের বয়স নির্ধারণ করার প্রয়ােজন হয় না।

আমাদের হাতে আছে বহু রকমের পদ্ধতি যা দিয়ে কোন একটা ফলাফলকে বারবার বিভিন্নভাবে ক্রস চেক বা নিরীক্ষণ করে নিতে পারি। পদ্ধতিগুলাে শুধু যে বৈজ্ঞানিক তাইই নয়, প্রয়ােজন এবং গুরুত্ব অনুযায়ী বিজ্ঞানীরা এত রকমের পদ্ধতি ব্যবহার করেন যে, এর ফলাফলের সঠিকতা নিয়ে আর দ্বিমত বা সন্দেহ প্রকাশ করার তেমন অবকাশ থাকে না। খ্রিষ্টীয় ধর্মাবলম্বী বিভিন্ন রক্ষণশীল দলগুলাে এখনও যখন বাইবেলের সেই ছয় হাজার বছরের পৃথিবীর সৃষ্টির ইতিহাস নিয়ে হইচই করেন এবং এই ডেটিং পদ্ধতিগুলােকে ভুল বলে চালিয়ে দেওয়ার প্রচারণায় লিপ্ত হন তখন তাদের অজ্ঞতা দেখে স্তম্ভিত হয়ে যাওয়া ছাড়া আর কি বা করার থাকে? উট পাখির মত বালিতে মাথা গুজে পড়ে থাকলেই তাে আর বাস্তবতাকে অস্বীকার করা যাবে না। সত্যকে মেনে নিয়ে জ্ঞানের সীমাকে প্রসারিত করাই হচ্ছে মানব সভ্যতার রীতি, এভাবেই আমরা এগিয়েছি। একটু একটু করে, সেই গুহাবাস থেকে আজকের এই সীমাহীন মহাজাগতিক এক আধুনিক ভবিষ্যতের দিগন্তরেখার দিকে।
বিবর্তনের পথ ধরে
৫.↑ Dawkins, R, 2004, The Ancester’s tale, Houghton Miffin Company, NY, Boston: USA, pp 516-523.
৬.↑ Berra TM, 1990, Evolution and the Myth of Creationism, Stanford University Press, Stanford, California, pp 36-37.
৭.↑ http://www.actionbioscience.org/evolution/benton.html
৮.↑ Stringer C and Andrews P, 2005, The Complete Wrold of Human Evolution, Thames and Hudson Ltd, London, p 32